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LE’ITER TO THE EDITOR 

Multi-soliton solutions in a finite depth fluid 

R I Joseph and Robert Egri 
Department of Electrical Engineering, The Johns Hopkins University, Baltimore, 
Maryland 21218, USA 

Received 7 February 1978 

Abstract. A systematic procedure for solving the Whitham equation in a two-layer fluid of 
finite depth is developed. An analytic solution which asymptotically evolves into exactly 
two solitons is exhibited. The characteristics of these solitons can be quite different from 
those resulting from the Korteweg-de Vries equation (the shallow water limit of the 
present theory). 

We consider the Whitham equation (Whitham 1967) 
a3 

‘I+ Cu(x, t ) -  ‘)+a dx’ u ( x ‘ ,  t )G(x’-x)= 0, 
at ax ax 

(1) 
G(k) = - J m  dkc(k)eik“, 

2 7  -m 

subject to the boundary conditions U + 0 for 1x1 + 03, c ( k )  being the infinitesimal-wave 
phase speed dispersion. For the ‘thin thermocline model’ (Phillips 1966) in a fluid of 
total depth D, thermocline located at the depth z = -d, the appropriate small-k form 
of c ( k )  is 

coth(kD)--)] 1 
kD ‘ 

If D +0,  c ( k ) - c o -  k 2  and equation (1) reduces to the Korteweg-de Vries equation 
(Benjamin 1966) whereas for D + m ,  c ( k ) - c o - I k l ,  and equation (1) reduces to the 
Benjamin-Ono equation (Benjamin 1967, Ono 1975). Substitution of equation (2) 
into equation (1) reduces it to the form 

au(x, t )  au(x, t )  au(x, t )  cod a2 
+CO- + Cu(x, t)- +- 7 J dx’ u ( x ’ ,  t ) H ( x ’ - x ) = O ,  

at ax ax 2 0  ax -m 

H ( x )  = sgn(x)[exp(rIxl/D)- 11-l. 

It has recently been shown (Joseph 1977) that an exact stationary wave solution to 
equation (3) is given by 

u ( x  - c t )  = (coyd/CD) sin(y)(cosh[y(x - cr)/D] +cos(y)}-’ (4 ) 
where C/CO = 1 + (d /2D) [1 -  y cot(y)], y being an arbitrary real parameter with O< 
y < 7. The purpose of the present Letter is to outline a general method for obtaining 
particular non-stationary solutions to equation (3). 

0305-4770/78/0005-9097$01.00 @ 1978 The Institute of Physics L97 
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The term c0du/dx in equation (3) can be transformed away by setting x = 2 + c o .  . , 
t = . . . We shall assume this to be done but still retain the (x, t )  notation rather than 
use (2, . .), taking into account any differences in the final results. Note that if u(x, t )  is 
a solution, then so is U(-x, - t ) .  We represent the solutions in the following complex 
form: 

CO 

u(x, t )  = a,(?) exp(-inwAx/D)), 
n = O  

A being an arbitrary real parameter. Substitution of equation ( 5 )  into equation (3) 
leads directly to the following conditions on the a,( t ) :  

U&) = 0 ,  
n (6)  &(O-Pfna,(O=4nQ C a m ( t ) a n - m ( t ) ,  n>O 

m=O 

where 

f, = n2(--cot(yn)) 1 

Yn 

with P = i ~ ~ d ( y / D ) ~ ,  Q = C ( y / D )  and y = rib. These are to be solved subject to 
initial conditions a,(O) which are obtained from an assumed u(x, 0) via equation ( 5 ) .  
Since U o ( t )  = 0, ao(t) = constant. We now restrict our attention to solutions for which 
this constant is set equal to zero. The lower and upper summation limits in equation 
(6 )  are then replaced by 1 and n - 1, respectively. Hence the problem is reduced to 
solving a set of ordinary linear first-order recursive differential equations. 

It is trivial to formally integrate equation (6).  The solutions will in general be of 
the form 

where the summation is to be taken over all integer combinations consistent with the 
constraints 

n 
n = jri, ri a non-negative integer 

j = 1  

and 

(9) 

The core of finding the solution is a dctermination of the constants a (c'")), these being 
constrained by 

It can be shown that if we pick the un(0), n C N, properly, while for n > N have 
them satisfy equation (1 1) automatically, solutions result for which the summations 
can be exactly performed. To illustrate this we shall first recover the stationary wave 
solution given by equation (4). Consider solutions to equation (6) of the form 

a, ( t )  = a (n) enPfl', a (n )=  an(0). (12) 
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This an(t)  will solve equation (6) if the a ( n )  satisfy the equation 
n-1 

m = l  
A(n)a(n)=ina  1 a ( m ) a ( n - m )  (13) 

where U = Q/P and 

A(n)= nfl-fn = n[n ~o t (ny ) -c~ t (y ) ] .  (14) 

We take as the initial condition al(0) = ( 4 / ~ )  sin(y). It is then straightforward to 
verify that solutions to equation (13) are 

a ( n ) =  (4/~)(-1)"+' sin(ny). (15) 

Substitution of this a ( n )  into equation (12) and whence into equation (5) gives 
m 

u(x, t )  = (4/a)  (-l)"+' sin(ny) e-"' = (2/u) sin(y)[cosh([)+cos(y)]-' (16) 
n = l  

where [ = (yx/D)-Pflt. For A real, y pure imaginary, equation (16) represents a 
periodic solution. This function is bounded in x, t and A.  We can analytically continue 
it into the whole y-plane, so that y becomes a general complex number. In particular, 
this function will exist and be bounded for y purely real, 0 < y < 7r which we assume to 
be the case. Transforming back to the original reference frame shows this result to 
agree exactly with equation (4). Note that although this function is defined for all x, it 
cannot be formally expanded as a single series of exponentials which simultaneously 
converges for x > 0 and x < 0. 

As a less trivial example, we now consider solutions which can evolve asymptotic- 
ally into exactly two solitons. We write an(t)  in the form 

This an(?)  solves equation (6) if the a(q, n )  satisfy 

A(4, n)a^(4, n )  = ;nu f d(s,  m)a^(q + 1 - s, n - m) 
m = l  s = l  

where 

and 

A(4, n) = 2(q - 1) tan(y)+ A(n). (21) 
Picking a1(0) = (4/a)  sin(?), a2(O) = (4/u) sin(2y), solutions to equation (19) can be 
shown to be 

a(1, n)= (4/0)(-1)"+' sin(ny) 

a(q, 2q-2)= (8 /~) ( -1)~s in[2(q- l )y l ,  4'1 
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q-2 B k  
a(4,  n)= (4/u)nB(-l)"+' sin(ny) 1 

k = O  k ! ( k  f I)! 
k - 1  

X n, (n + 1-24 - j ) (q  -2-j), 

B = 8 cos'(y>[ 1 + 8 cos'(y)]-' 

4 8 2 ,  n > 24 -2, (23) 
j = O  

with 

(23) 

and the prime on l7 means set the product equal to unity for k = 0. Substituting 
equation (22) into equation (17) and whence into equation ( 5 )  then gives 

U(X, f ) = U i + U z + U 3  (24) 
where 

m 

s = l  
u1 = 1 a(1, s)e-"' = (2/u)sin(y)[cosh(~1)+cos(y)]-' 

m 

s = l  
U' = 1 a (s + 1,2s)  e-2sE2 = (4/u) sin(2y)[cosh(2&)+ cos(2y)l-l 

with 

and 

For y pure imaginary, this solution represents the interaction of two complex 
periodic waves. Using the same kind of arguments as before, we can however take y 
to be purely real with O<y<$.rr. To show that this solution then asymptotically 
evolves into two solitons, we make the following identifications ( y  real): 

61 = DPfi/y = ( ~ o d / 2 D ) [ l -  y cot(y)] 

22 = DPf2/2y = (4 /2D) [ l -  2 7  cot(2y)l 

so that & = ( y /D) (x  -tit), & = (y/D)(x - &f). Now consider the limit t -* +a. 
Suppose that & remains finite, so that 62 - (el - &)t. If 6 2  remains finite, then 51 - 
(tZ- t l) t .  For c^l> E2 and finite (& - +CO) we find from equations (25)-(27) 

U - (2/u) sin(y)[cosh(Sl)+cos(y)]-' (29) 
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while for 5 2  finite (52 - -a), 
U - ( 4 / a )  sin(2y)[cosh(2&+ p ) +  cos(2y)]-' (30) 

with p = In[ 1 + 8 cos2(y)]. Similarly for tl < &, for (1 finite ((2 - -00) we get a result 
of the form of equation (29) but with t1 + 51 + p  while for 6 2  finite (& -+a) we get 
equation (30) but with 2 t2  + p + 2t2.  Hence aside from a phase shift (p ) ,  this solution 
asymptotically evolves into two localised waves, each of the same shape as the 
stationary wave solution, equation (4), moving with constant speeds c1= c o f t l ,  
c 2 = c 0 + t 2  in the original reference frame. To show that these localised waves 
represent solitons, consider the limit t + --CO. The asymptotic forms for c1> c2 are 
then given by those for the case c1 < c2 ,  t + +a and vice uersu, verifying that except for 
phase shifts, the two limits give the same results. 

Since the two-soliton solution we have obtained depends on a parameter y we in 
fact have a whole family of possible solutions, corresponding to the particular initial 
function U ( X ,  0) characterised by a given value of y. In general U ( X ,  0) is not a 
symmetrical function of x ,  e.g. U ( x ,  0) # U ( -x ,  0). A second set of independent solu- 
tions can be obtained from those given by the simple replacements x + -x ,  t + -t. It is 
interesting to compare the detailed form of the solitons with those of the Korteweg- 
de Vries equation. In the latter case, the peak soliton amplitudes ( U , )  and speeds rela- 
tive to co(c - co) are both proportional to the square of an appropriate real eigenvalue 
(K, )  of U ( X ,  0) (Gardner et ul 1974). Hence both solitons would have peak asymptotic 
amplitudes of the same sign and must both move off in the same direction. Moreover, 
the ratio (c - co)/up must be the same for these solitons. For the finite depth situation, 
the latter restriction is no longer true. To illustrate these points, figure 1 shows the 
spatial form of the solution at various times for the case D/d = 5 and y = 1.4. The 
asymptotic appearance of two localised parts is clear. Both solitons move off to the 
right and have peak amplitudes of the same sign. However, here (c2 - co)/(cI - co) = 
11.7, while u p 2 / ~ p l  = 13.8. This figure is drawn in the original frame of reference. 

The generalisation of these results to an N-soliton case appears clear. For n s N 
one can choose the U n ( 0 )  by un(0)=(4/v)sin(ny) and for n > N  by equation (11). 

k 

Figure 1. Dependence of reduced two-soliton solution G(= CDU/c0yd) on reduced 
spatial position .t(= yx /D)  for various values of reduced time f(= ycot/D) for the case 
Dld = 5 ,  y = 1.4. See equations (24)-(27). 
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Exactly N solitons asymptotically evolve in the form 

An N 

l4- c 
,,=I cosh(n5, + kn)+  COS(^^) 

where An = (2/a)n sin(ny), tn = ( y /D) (x  - cnt), cn/co = 1 + (d/2D)[  1 - n y  cot(ny)], 
kn is some phase shift and y is a real parameter, 0 < y < T / N .  
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